On chlorophyll extracts, green poo and hogwash

“It will probably give her green poo” said Eric.

Eric had just received an email from his physiotherapist, worried about a friend with Lyme disease who had been told to take chloroxygen.

Realising this was outside his area of expertise, Eric contacted me. We have known each other for a long time.

Chloroxygen? For Lyme disease? Really?

Now I was curious.

Is there something in this or is it just another load of internet promoted hogwash?

So I decided to investigate the scientific literature on chloroxygen and its effect on health, particularly Lyme disease.

What is chloroxygen?

According to the promotional literature of one well-known brand, chloroxygen is an extract of chlorophyll from stinging nettles, suspended in water and glycerine, and free from preservatives and alcohol (1).

chloroxygen

This seemed odd to me because the chlorophyll molecule has an oil-loving tail and does not dissolve in water.

I examined the label: Chlorophyll (Sodium Copper Chlorophyllins) 50mg per serving.

Just as I thought.

Chlorophyllin is a semi-synthetic mixture of sodium copper salts derived from chlorophyll. Chlorophyll is chemically treated and the magnesium atom at the centre of the ring is replaced with copper and the oil-loving tail is lost.

Unlike natural chlorophyll, chlorophyllin is water-soluble.

Although the content of different chlorophyllin mixtures may vary, two compounds commonly found in commercial chlorophyllin mixtures are trisodium copper chlorin e6 and disodium copper chlorin e4 (2).

These chlorophyllins are not naturally occurring substances and it is therefore more accurate to describe chloroxygen as a semi-synthetic chlorophyll derivative.

Health benefits claimed for chlorophyll-derived products

As you can see from the picture above, there are some, shall we say ‘interesting’ claims for the health benefits of chlorophyll-derived products, including but not limited to:

  1. Anti-bacterial activity
  2. Enhancement of the oxygen carrying capacity of the blood by building red blood cells, which boosts energy levels and facilitates high altitude acclimation
  3. Deodorant for bodily smells
  4. Inhibition of toxins that damage the body

How many of these are supported by scientific evidence, I wondered.

1.  Anti-bacterial activity

Most claims that chlorophyll products can kill bacteria are based on research performed early in the 20th century, before antibiotics were available to fight infections (3). Although many of these studies do not meet the rigorous standards of modern science, there is evidence that chlorophyll can kill certain types of bacteria (4). There is, however, no published evidence that chlorophyll can kill the type of bacteria which cause Lyme disease (more on this below).

Even if there were such evidence, it is unlikely to be a practical choice, because very high chlorophyll concentrations are needed for any positive anti-bacterial effect and modern antibiotics are far more effective.

2.  Increase in the oxygen carrying capacity of blood

Marketing brochures for chloroxygen claim that chlorophyll is the “blood of plants” and “increases haemoglobin’s ability to grab and hold oxygen” (1).

Chloroxygen 2

It is true that the chemical structures of haemoglobin and chlorophyll display some similarities but they perform entirely different functions in living organisms and are made via different pathways (5).  One of my friends who is a chemist gets very annoyed about this.  He says that claiming that chlorophyll and haemoglobin are closely related is like saying that a man is like a woman.

Haemoglobin is a molecule in the red blood cells of animals, made from a red iron-containing pigment called haem, bound to a protein, globin. Its primary function is to transport oxygen from the lungs to the tissues and then to transport carbon dioxide back from the tissues to the lungs.

Chlorophylls are a group of magnesium-containing molecules in the chloroplasts of plant cells. Their role is to trap energy from sunlight. This energy is then used, together with carbon dioxide, to manufacture the carbohydrates that all living organisms use as food.

Chlorophyll-a, the most abundant and most important chlorophyll of the family, represents about 75 per cent of the green pigments in plants. It is very susceptible to metabolism in the human gut and little of the chlorophyll-a that is ingested emerges intact (6).

Chlorophyll does not bind or transport oxygen and is not absorbed into the bloodstream. It is therefore biologically implausible that it “increases haemoglobin’s ability to grab and hold oxygen”.

Despite an exhaustive search of the scientific literature, I have been unable to find any evidence that the effect of chlorophyll on oxygen carrying capacity in humans has ever been studied.

3.  Deodorant for bodily smells

In the 1940’s and 1950’s various claims were made for the deodorant properties of chlorophyll. It was alleged to reduce bad breath, stench from skin ulcers, vaginal odours and bad smells from colostomies. Studies published in the British Medical Journal in 1953 provided no evidence to support these claims (7). According to John C. Kephart, who performed studies at the laboratories of the National Chlorophyll and Chemical Company about 20 years ago, “No deodorant effect can possibly occur from the quantities of chlorophyll put in products such as gum, foot powder, cough drops, etc. To be effective, large doses must be given internally” (8).

chlorophyll deodorant

The Food and Drug Administration of the United States published a monograph pertaining to the use of chlorophyllin copper complex as a drug entitled “Deodorant Drug Products for Internal Use.” This monograph describes chlorophyllin copper complex as “generally recognized as safe and effective”, and describes the following uses: (i) “An aid to reduce odor from a colostomy or ileostomy.” (ii) “An aid to reduce fecal odor due to incontinence” (9).

4.  Inhibits toxins that damage the body

Chlorophyll and chlorophyllin are able to form tight molecular complexes with certain chemicals known or suspected to cause cancer, including polycyclic aromatic hydrocarbons found in tobacco smoke (10), some heterocyclic amines found in cooked meat (11), and aflatoxin-B1 (12).

Diets high in red meat and low in green vegetables are associated with an increased risk of colon cancer. It has been suggested that haem, the iron carrier of red meat, is involved in diet-induced damage to the cells of the colon resulting in cancer. There is evidence that natural chlorophyll, rather than chlorophyllin, reduces the toxicity caused by haem (13).

Researchers at Oregon State University reported that chlorophyll and its derivative chlorophyllin are effective in limiting the absorption of aflatoxin in humans (14). Aflatoxin is produced by a fungus that is a contaminant of grains including corn, peanuts and soybeans; it is known to cause liver cancer – and can work in concert with other health concerns, such as hepatitis.

Aflatoxin

Aflatoxin

Studies in animal models have suggested that chlorophyllin may act as an antioxidant (15) but more research is needed to understand the bioavailability and metabolism of natural chlorophylls and synthetic chlorophyllin in humans before conclusions can be drawn (16).

What is Lyme disease?

Lyme disease is a tick-borne infection caused by an organism called Borrelia burgdorferi. This is a type of gram-negative bacterium called a spirochete. Spirochetes look like miniature springs and move in a corkscrew fashion, which enables them to travel more easily through viscous substances like mucus.

Borrelia burgdorferi

Borrelia burgdorferi

The earliest and most common symptom of Lyme disease is a pink or red circular rash that develops around the area of the bite, three to 30 days after someone is bitten. The rash is often described as looking like a bull’s-eye on a dart board.

Early symptoms of Lyme disease

Early symptoms of Lyme disease

You may also experience flu-like symptoms, such as tiredness, headaches and muscle or joint pain.

If Lyme disease is left untreated, further symptoms may develop months or even years later and can include:

  • muscle pain
  • joint pain and swelling of the joints
  • neurological symptoms, such as temporary paralysis of the facial muscles

Lyme disease in its late stages can trigger symptoms similar to those of fibromyalgia or chronic fatigue syndrome. This is known as chronic Lyme disease. More research into this form of Lyme disease is needed (17).

A person with Lyme disease is not contagious because the infection can only be spread by ticks.

As the causal organism is a bacterium, Lyme disease is medically treated with antibiotics.

Choice of antibiotic varies with stage of the disease but amoxicillin, doxycycline and ceftriaxone are commonly used (18). Treatment is usually required for 2 to 4 weeks.

In the early stages, oral antibiotics are usually effective but if treatment is delayed until later stages, then intravenous antibiotics may be required.

Conclusion

Whilst there is strong scientific evidence that consumption of green leafy plants, rich in chlorophyll and many other nutrients, is beneficial for human health (19) (20) (21), there is limited scientific evidence to substantiate the health claims made for semi-synthetic chlorophyll-derived products such as chloroxygen.

Chlorophyll and its semi-synthetic chlorophyllin derivatives may have some weak anti-bacterial activity, but there is absolutely no scientific evidence for their efficacy against the bacterium which causes Lyme disease.

Furthermore, there is no plausible biological explanation or evidence to support the claim that chloroxygen increases the oxygen carrying capacity of the blood.

This is utter hogwash.

Many of the nutrients which build and sustain the essential elements in blood are found in plant foods high in chlorophyll, but this is the limit of the association between chlorophyll and the oxygen carrying capacity of blood.

Drinking green juices and eating green vegetables such as rocket (arugula), broccoli, parsley, kale and spinach, together with other plant foods rich in iron and other minerals, such as pulses and sea vegetables (these are actually algae rather than plants), is likely to be just as effective for strengthening the blood, and maybe more so, than taking supplements of man-made chemical derivatives of chlorophyll.

1-IMG_1896

There is evidence that chlorophyll and chlorophyllin can bind to toxic substances such as aflatoxin and may prevent cancer and other damage to the body. The anti-cancer properties of whole plants are, however, well-documented (22) and the studies reported on chlorophyll products may simply offer potential mechanisms for some of the benefits of eating a plant-based diet.

So my advice to Dave and his friends is not to take promotional literature on dietary supplements at face value.  In some cases, there is little or no evidence to substantiate the claims made for the products.

Consuming a predominantly plant-based diet will help to support the immune system in fighting infections and improve general health, but if Lyme Disease is diagnosed, it is important to seek medical treatment with modern antibiotics.

If you have enjoyed this post and would like to know how to go about introducing more plant-based dishes into your diet, why not sign up for free email updates.

You can also stay in touch by visiting my website and by joining me on Facebook, Twitter, Pinterest and LinkedIn.

References

1. Chloroxygen. http://www.herbsetc.com. [Online] http://www.herbsetc.com/Topics/PDF/chloro_bro_07.pdf.
2. Chlorophyll: Structural Properties, Health Benefits and Its Occurrence in Virgin Olive Oils. İnanç, A. Levent. 2011, Akademik Gıda/Academic Food Journal, Vol. 9 (2), pp. 26-32.
3. PhD, James A. Lowell. Amazing claims for chlorophyll (1987). Quackwatch. [Online] http://www.quackwatch.org/01QuackeryRelatedTopics/DSH/chlorophyll.html.
4. Anti-bacterial activity of chorophyll. Mowbray, Sheila. 2 February 1957, British Medical Journal, Vol. 1(5013), pp. 268-270.
5. Haems and chlorophylls: comparison of function and formation. Hendry, G.A.F. and Jones, O.T.G. 1980, Journal of Medical Genetics, Vol. 17, pp. 1-14.
6. The metabolites of dietary chlorophyll. Ma, L. and Dolphin, D. 1999, Phytochemistry, Vol. 50, pp. 195-202.
7. Assessment of chlorophyll as a deodorant. Brocklehurst, J.C. 7 March 1953, British Medical Journal, Vol. 1(4809), pp. 541-544.
8. Chlorophyll derivatives: their chemistry, commercial preparation and uses. Kephart, J.C. 1955, Journal of Ecological Botany 9:3, Vol. 9, pp. 3-38.
9. Federal Register Volume 55 No. 92 – Chlorophyllin as Deodorant. Food and Drug Administration http://www.fda.gov. [Online] 11 May 1990. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/Over-the-CounterOTCDrugs/StatusofOTCRulemakings/ucm110925.pdf.
10. Mechanisms of the in vitro antimutagenic action of chlorophyllin against benzo[a]pyrene: studies of enzyme inhibition, molecular complex formation and degradation of the ultimate carcinogen. Tachino N, Guo D, Dashwood WM, Yamane S, Larsen R, Dashwood R. 1994, Mutation Research , Vol. 308 (2), pp. 191-203.
11. Study of the forces of stabilizing complexes between chlorophylls and heterocyclic amine mutagens. Dashwood R, Yamane S, Larsen R. 1996, Environ Mol Mutagen, Vol. 27 (3), pp. 211-218.
12. Mechanisms of chlorophyllin anticarcinogenesis against aflatoxin B1: complex formation with the carcinogen. Breinholt V, Schimerlik M, Dashwood R, Bailey G. 1995, Chem Res Toxicol., Vol. 8 (4), pp. 506-514.
13. Natural chlorophyll but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in rat colon. de Vogel J, Jonker-Termont DS, Katan MB, van der Meer R. 2005, Journal of Nutrition, Vol. 135 (8), pp. 1995-2000.
14. Effects of Chlorophyll and Chlorophyllin on Low-Dose Aflatoxin B1 pharmacokinetics in human volunteers. Carole Jubert, John Mata, Graham Bench, Roderick Dashwood, Cliff Pereira, William Tracewell. December 2009, Cancer Prev Res 2009;2(12) December 2009, Vol. 2 , pp. 1015-1022.
15. Effect of chlorophyllin against oxidative stress in splenic lymphocytes in vitro and in vivo. Kumar SS, Shankar B, Sainis KB. 2004, Biochim Biophys Acta., Vol. 1672 (2), pp. 100-111.
16. Bioavailability of dietary sodium copper chlorophyllin and its effect on antioxidant defence parameters of Wistar rats. . Gomes, B. B., Barros, S. B., Andrade-Wartha, E. R., Silva, A. M., Silva, V. V. and Lanfer-Marquez, U. M. 2009, J. Sci. Food Agric., Vols. 889: 2003–2010, pp. 2003-2010.
17. Lyme disease. NHS Choices. [Online] http://www.nhs.uk/conditions/Lyme-disease/Pages/Introduction.aspx.
18. The Merck Manual of Diagnosis and Therapy. 19th. s.l. : Merck Manuals, 2011.
19. Global burden of disease study 2010. Murray, C. et al. 13 December 2012, The Lancet.
20. Campbell, T C and Campbell, T M. The China Study. s.l. : Benbella Books, 2006.
21. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study. al, Anne-Claire Vergnaud et. 3 April 2013, American Journal of Clinical Nutrition.
22. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC : AICR, 2007.

Advertisements

How to prevent cancer

Vegetables and FruitsSix years ago the World Cancer Research Fund and the American Institute of Cancer Research published the mother of all literature reviews on food, nutrition, physical activity and the prevention of cancer (1).

A panel of 21 world-renowned scientists reviewed the research evidence and drew conclusions based on in-depth analysis of over 7,000 scientific studies published on cancer prevention over the last 50 years.

As a result of this review they made a number of recommendations:

  1. Be as lean as possible without becoming underweight
  2. Be physically active for at least 30 minutes per day
  3. Limit consumption of energy-dense foods and avoid sugary drinks
  4. Eat more of a variety of vegetables, fruit, whole grains and pulses
  5. Limit consumption of red meats and avoid processed meats
  6. If consumed at all, limit alcoholic drinks to 2 per day for men and 1 per day for women
  7. Limit consumption of salty foods and foods processed with salt
  8. Don’t use supplements to protect against cancer
  9. Do not smoke or chew tobacco
  10. Breastfeed exclusively for up to 6 months and then add other liquids and foods
  11. After treatment, cancer survivors should follow the recommendations for cancer prevention.

Since then further research has been conducted to see whether compliance with these recommendations has any effect on the risk of death from cancer and other diseases.

The findings were published in the American Journal of Clinical Nutrition on 3 April 2013 (2).

Researchers investigated nearly 380,000 people in nine European countries over 12 years and examined their diet and lifestyle to see how closely they complied with seven of World Cancer Research Fund/American Institute for Cancer Research’s (WCRF/AICR) Recommendations for Cancer Prevention.

They found that the risk of dying from several diseases, including cancer, circulatory diseases and respiratory diseases, can be reduced by 34 per cent if these recommendations are followed.

Those who most closely followed the WCRF/AICR Recommendations had a 50 per cent reduced chance of dying from respiratory disease, 44 per cent for circulatory disease and 20 per cent for cancer, when compared to the group with the lowest level of compliance.

The Recommendations with the greatest impact on reducing the risk of death from disease were being as lean as possible without becoming underweight (22 per cent reduced risk) and eating mostly plant foods (21 per cent).

In terms of cancer, limiting alcohol consumption and following the plant food recommendation reduced the risk of dying from the disease by the greatest margin, at 21 per cent and 17 per cent respectively.

The study is the first to examine breastfeeding as part of a combination of lifestyle changes to see what effect it has on risk of dying.  It showed that women who breastfed for at least six months had a reduced risk of death from cancer (ten per cent) and circulatory disease (17 per cent).

Although the WRCF/AICR recommendations were focused on the prevention of cancer, this study shows that adherence to these recommendations also reduces the risk of other diseases.

The bottom line is that maintaining a lean body by consuming a predominantly plant-based diet, being physically active and minimising intake of alcohol is most likely to protect you from cancer.  Looking after yourself in this way will also help to reduce your risk of circulatory and respiratory diseases.

If you would like to learn about how to introduce more plant-based dishes into your diet why not sign up for free email updates with information, recipes and news and visit my website at http://www.cookingforhealth.biz.

You can also stay in touch by joining me on Facebook and Twitter and LinkedIn.

References

1. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC : AICR, 2007.

2. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study. Anne-Claire Vergnaud et al. 3 April 2013, American Journal of Clinical Nutrition.